102 research outputs found

    Terrestrial Laser Scanner Resolution: Numerical Simulations and Experiments on Spatial Sampling Optimization

    Get PDF
    An empirical approach is proposed in order to evaluate the largest spot spacing allowing the appropriate resolution to recognize the required surface details in a terrestrial laser scanner (TLS) survey. The suitable combination of laser beam divergence and spot spacing for the effective scanning angular resolution has been studied by numerical simulation experiments with an artificial target taken from distances between 25 m and 100 m, and observations of real surfaces. The tests have been performed by using the Optech ILRIS-3D instrument. Results show that the discrimination of elements smaller than a third of the beam divergence (D) is not possible and that the ratio between the used spot-spacing (ss) and the element size (TS) is linearly related to the acquisition range. The zero and first order parameters of this linear trend are computed and used to solve for the maximum efficient ss at defined ranges for a defined TS. Despite the fact that the parameters are obtained for the Optech ILRIS-3D scanner case, and depend on its specific technical data and performances, the proposed method has general validity and it can be used to estimate the corresponding parameters for other instruments. The obtained results allow the optimization of a TLS survey in terms of acquisition time and surface details recognition

    Hacking the topographic ruggedness index

    Get PDF
    The topographic ruggedness index (TRI) is widely adopted for the analysis of digital elevation models, providing information on local surface spatial variability. In this work, the TRI is interpreted according to a geostatistical perspective, highlighting its main characteristics and drawbacks. TRI can be interpreted as an omnidirectional short-range spatial variability index, computed according to a pixel centered perspective. The simplicity and interpretability of the index, free from user-dependent selections, promoted its implementation in several software environments and its application in a wide set of case studies. However, the index has several drawbacks for its application in earth sciences, such as a strong dependency on local slope (it is basically an average adjacent neighbor slope algorithm) and the selection of different lag distances in the computation of spatial variability along the main directions and the diagonal ones. We propose a new metric radial roughness (RRI) in order to solve the main drawbacks of TRI but maintaining its main philosophy (i.e., pixel centered perspective and simplicity of the algorithm). The new index corrects for the differences in lag distances and resolves the dependency on trend using increments of order 2. The code of the index, implemented in R statistical language, and test data are provided with the paper (https://doi.org/10.5281/zenodo.7132160) to promote its implementation in other software environments

    Non-permanent GPS data for regional-scale kinematics: reliable deformation rate before the 6 April, 2009, earthquake in the L'Aquila area

    Get PDF
    A GPS-based geodetic study at a regional scale requires the availability of a dense network that is characterized by 10 km to 30 km spacing, typically followed in a few continuous GPS stations (CGPSs) and several non-permanent GPS stations (NPSs). As short observation times do not allow adequate noise modeling, NPS data need specific processing where the main differences between NPSs and CGPSs are taken into account: primarily time-series length and antenna repositioning error. The GPS data collected in the 1999-2007 time-span from non-permanent measurement campaigns in the central Apennine area (Italy) that was recently hit by the Mw 6.3 L'Aquila earthquake (April 6, 2009) are here further analyzed to compute a reliable strain-rate field at a regional scale. Moreover, areas characterized by different kinematics are recognized, and a complete characterization of the regional-scale kinematics is attempted. These new data can be interpreted as indicators from the viewpoint of seismic risk assessment

    Refining Rates of Active Crustal Deformation in the Upper Plate of Subduction Zones, Implied by Geological and Geodetic Data: The E-Dipping West Crati Fault, Southern Italy

    Get PDF
    We investigate crustal deformation within the upper plate of the Ionian Subduction Zone (ISZ) at different time scales by (i) refining geodetic rates of crustal extension from continuous Global Navigation Satellite System (GNSS) measurements and (ii) mapping sequence of Late Quaternary raised marine terraces tectonically deformed by the West Crati normal fault, in northern Calabria. This region experienced damaging earthquakes in 1184 (M 6.75) and 1854 (M 6.3), possibly on the E-dipping West Crati fault (WCF) which, however, is not unanimously considered to be a seismogenic source. We report geodetic measurements of extension and strain rates across the strike of the E dipping WCF and throughout the northern Calabria obtained by using velocities from 18 permanent GNSS stations with a series length longer than 4.5 years. These results suggest that crustal extension may be seismically accommodated in this region by a few normal faults. Furthermore, by applying a synchronous correlation approach, we refine the chronology of understudied tectonically deformed palaeoshorelines mapped on the footwall and along the strike of the WCF, facilitating calculation of the associated fault-controlled uplift rates. Raised Late Quaternary palaeoshorelines are preserved on the footwall of the WCF indicating that “regional” uplift, likely related to the deformation associated either with the subduction or mantle upwelling processes, is affected by local footwall uplift. We show that GIS-based elevations of Late Quaternary palaeoshorelines, as well as temporally constant uplift rates, vary along the strike of the WCF, implying normal faulting activity through time. This suggests that (i) the fault slip rate governing seismic hazard has also been constant over the Late Quaternary, over multiple earthquake cycles, and (ii) our geodetically derived fault throw rate for the WCF is likely a more than reasonable value to be used over longer time scales for an improved seismic hazard assessment. Overall, we emphasize the importance of mapping crustal deformation within the upper plate above subduction zones to avoid unreliable interpretations relating to the mechanism controlling regional uplift

    Analyzing Virtual Reference Station for GPS surveying: experiments and applications in a test site of the northern Apennine (Italy).

    Get PDF
    The availability of a GPS network of 10-20 km mean size, provides good topographical support for the measurement of ground displacements, even at a local scale such as a landslide. In particular, a series of multitemporal kinematic or rapid-static GPS acquisitions of a landslide allows a good characterization of its displacements if the measurements are referred to a GPS reference network. Nevertheless, a wider network formed by stations located at long distances, for example at several tens of kilometers, characterized by large spacing, can lead to results affected by high noise, degrading the accuracy of final point positions. In order to obtain an adequate GPS reference network, some virtual reference stations (VRSs) can be introduced, even if a network refinement based on VRS cannot reach the same accuracy of a real local network. Some experiments, including measurements on a real landslide, have been performed in order to evaluate the performance of this technique. The results point out that the standard deviation of the obtained solutions is about two or three times larger than those which can be reached using a real local network

    Experimental setup to measure the heat-exchange processes by controlling thermal and hydraulic conditions

    Get PDF
    The design of a Borehole Heat Exchanger (BHE) is based on the evaluation of the thermal exchange capacity of the whole system constituted by the probes and the surrounding ground. The energy performance of a BHE mainly depends on the thermal properties of the sediments, the possible groundwater flow and the changes in the thermal gradient in the probe's surroundings due to the continuous heat exchange with the subsoil. The interpretation of the in-field applications is often difficult because in many instances the information needed is unavailable due to difficulties of in-field measurements. An experimental device was built in order to assess, under controlled conditions, the evolution in time and space of the energetic processes that occur between a thermal probe and the surrounding ground. A copper probe was placed into a soil control volume of 1m3 and 24 high precision temperature sensors were distributed inside this volume at different distances from the probe. The configuration of the experimental settings was built to allow alterations in terms of sediments, groundwater flow conditions, thermal probe properties and operations, in order to simulate different physical conditions and to better understand the complex physical processes involved. Another goal of the experimental research was to produce reliable experimental data that can be used for the calibration and set up of numerical models. This paper describes the experimental apparatus and two experiments performed in order to assess its capability to satisfy the design requirements

    UCP4C mediates uncoupled respiration in larvae of Drosophila melanogaster

    Get PDF
    Larvae of Drosophila melanogaster reared at 23\ub0C and switched to 14\ub0C for 1 h are 0.5\ub0C warmer than the surrounding medium. In keeping with dissipation of energy, respiration of Drosophila melanogaster larvae cannot be decreased by the F-ATPase inhibitor oligomycin or stimulated by protonophore. Silencing of Ucp4C conferred sensitivity of respiration to oligomycin and uncoupler, and prevented larva-to-adult progression at 15\ub0C but not 23\ub0C. Uncoupled respiration of larval mitochondria required palmitate, was dependent on Ucp4C and was inhibited by guanosine diphosphate. UCP4C is required for development through the prepupal stages at low temperatures and may be an uncoupling protein

    Photogrammetric Surveys: the Case of Monterosso a Mare (Ligurian Sea, Italy)

    Get PDF
    Abstract The Structure-from-Motion photogrammetry (SfM) allows a fast and easy data acquisition and a highly automated data processing, leading to accurate photorealistic point clouds. The results of a SfM-based modeling of the coastal zone of Monterosso a Mare (Eastern Liguria, Italy) are shown here. Four photogrammetric surveys of the area were carried out from both moving surface (boat) and aerial (Unmanned Aerial Vehicle) platforms. The corresponding results were compared in order to provide information about precision and model reliability from fast ad cheap SfM surveys carried out without Ground Control Points (GCPs). The important issue of scale factor evaluation was solved by means of selection of points easily recognizable in each point cloud and measurement of the length of the polyline that connects these points. The ratio between the lengths of the polyline defined on a point cloud and the corresponding polyline defined in a metric reference frame provided the scale factor. The results highlight that the SfM technique can be used in emergency conditions, where GCPs cannot be used, and is compatible with a floating platform-based observation, leading to point clouds whose resolution is some centimeters for an acquisition distance of 100-150 m
    • 

    corecore